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FOREWORD

The United States Navy has been a major contributor to the development
of aviation. In the beginning, a handful of highly dedicated, visionary naval
officers led the way to building a strong aviation program that had its roots
in aerodynamics research and development. In a time when few people
would have dreamed of the incredible achievements 75 years of naval aviation
would bring, Captain Walter Stuart Diehl was among those outstanding
pioneers whose active dedication led to a coherent, effective acrodynamics
research and development program.

The Navy's first wind tunnel was constructed at the Washington Navy
Yard in 1914. In 1918 Captain Diehl was placed in charge of the Navy’s
work in aerodynamics and hydrodynamics, a responsibility he maintained
until his retirement in 1951. When the Bureau of Aeronautics was established
in 1921, Captain Diehl became a charter member assuming the responsibility
for the funding, programs, and facilities of the Aerodynamics Laboratory
at the Washington Navy Yard. His strong influence on advancing aero-
dynamics and hydrodynamics technology and aircraft design was highlighted
by specific contributions in such technical areas as airplanc performance
and stability, reduction of flight test and towing basin data, seaplane design.
and quantification of the standard atmosphere. As aviation progressed,
Captain Diehl played a major role in influencing the direction of research
and experimental investigations at transonic and high speeds, and was instru-

mental in the development of the Skystreak and Skyrocket high-speed. high-

altitude research aircraft.

Captain Diehl was an active participant in the National Advisory Com-
mittee for Aeronautics (NACA), and he was the author of 46 NACA reports.
However, it was through his book, “Engineering Aerodynamics”—for many
years known as the aeronautical engineers’ “bible”—that he was able to

share his vast knowledge and experience with the technical community. As

a fitting tribute to Captain Diehl’s significant presence and contributions, the
David W. Taylor Naval Ship Research and Development Center is publishing
this commemorative edition upon the celebration of the 75th Anniversary

of Naval Aviation. ¢ Avaiiablllty Ccdes
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Walter Stuart Diehl, Captain, USN

Outstanding Pioneer in Naval Aviation



PREFACE

ENGINEERING AERODYNAMICS in its present form is
essentially a new book, the greater part of which is now
available for the first time.

Intensive aerodynamic research on the part of various
laboratories and active experimental construction on the
part of the airplane manufacturers have made available
so much new material that the original edition, published
in 1928, is obviously out of date. The preparation of this
second edition has incorporated the new material, and
afforded the opportunity for a complete revision.

ENGINEERING AERODYNAMICS has beefwritten to supply
the designer and the advanced aeronautical student with
concise, practical information on the dynamics of airplane
design.. It is not a mere compilation of material from
various sources nor does it contain undigested test data.
It is a carefully planned original development of practical
design methods based on theory and experiment.

In preparing this volume the author has analyzed a
vast amount of test data and endeavored to present the
essential conclusions in the form of equations or charts
from which desired factors may be obtained directly.
Tabular data and numerical examples are given where
required. Derivations are given for many equations, but
an effort has been made to avoid including unnecessary
material. For this reason the conventional treatment of
elementary aerodynamic problems is omitted. Descrip-
tions of procedure and details of tests are either given
briefly or omitted entirely, but numerous references are
cited for the benefit of those desiring to consult the original
sources.

vii
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CHAPTER 1
INTRODUCTION; DEFINITIONS AND SYMBOLS

Design Compromise. The designer of an airplane is con-
fronted with an endless series of compromises. At cach
stage in the design he must decide just how far a loss in
one characteristic is justified by a gain in some other char-
acteristic. The degree of success finally attained depends
largely on the soundness of the judgment exercised in the
designer’s decisions.

The ability to exercise sound engineering judgment
may be a natural talent, but it is more often the result of
training and experience. Given all of the data on a prob-
lem, the solution is usually obvious. It is, therefore,
essential that the aeronautical engincer have immediately
available as much information as he can obtain on the
problems confronting him. Many of these problems in-
volve detailed knowledge of aerodynamics. In the suc-
ceeding chapters an attempt has been made to supply
information on applied aerodynamics in the form best
adapted for direct application to design problems. The
proper understanding of these data requires a thorough
knowledge of the fundamental laws of mecha-ics. The
remainder of Chapter 1 is concerned chiefly with funda-
mentals.

Definition of Aerodynamics. Before attempting to give a
definition of aerodynamics, it is desirable to trace its rela-
tionship to kindred branches of mechanical science, all
coming under the classification of physics.

According to the Century Dictionary, physics is defined
as “The science of the principles operative in organic

3
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nature; the science of forces or forms of energy.”” We are
now concerned with the division of physics known as
mechanics and usually defined as ‘‘the science of motion."
While that definition is correct, it is probably bettc. tc say
that mechanics is that branch of physics which is concerr:ed
with forces, motion, and energy.

Mechanics is divided into four general branches; kine-
matics, kinetics, statics, and dynamics.

Kinematics is sometimes called the geometry of motion.
The Euclidian geometry is concerned only with space;
kinematics is concerned with both space and time, but not
with forces.

Kinetics is the science that treats of the mutual relations
between moving bodies. It is concerned with forces and
the resultant motions.

Statics is concerned with the equilibrium conditions for
forces acting on a body at rest.

Dynamics is concerned with forces and motion, and
in particular with the forces due to motion. Hydrody-
namics is that branch of dynamics that is concerned with
forces and motions in an incompressible fluid. Aerody-
namics is that branch of dynamics that is concerned with
forces and motions in a compressible fluid or gas. The
definition of aerodynamics in N.A.C.A. Nomenclature for
Aeronautics (Technical Report No. 474) is ““The branch
of dynamics that treats of the motion of air and other
gaseous fluids and of the forces acting on solids in motion
relative to such fluids.”

There is considerable overiapping in all branches of
mechanics. The definition of acrodynamics given above is
scientifically correct, but there is a definite tendency to
include under the heading of aerodynamics all of the
applied dynamics and kinetics used in aircraft design. To
the aeronautical engineer, most of the problems involving
forces and motions are ‘‘acrodynamic’’ problems, and he is
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not greatly concerned over the fact that the theoretical
solution to the problems of fluid motion are usually ob-
tained by the methods of hydrodynamics. For this reason
Engineering Aerodynamics will treat many problems not
strictly within the science of acrodynamics.

Fundamental Statics. The condition of equilibrium for
any rigid body requires that, in any reference plane:
1. The algebraic sum of all horizontal force components
equals zero.
2. The algebraic sum of all vertical force components
equals zero.
3. The algebraic sum of the moments of all the force com-
ponents, taken about any point in the plane, must
equal zero.

If these conditions arc not met, there must be motion
in accordance with the laws of dynamics. This motion
may be either translation or rotation alone, or it may be
any combination of the two.

A couple is two equal, oppositely directed, parallel
forces not acting in the same straight line. The force
components of a couple are zero, but the moment has the
same value for every origin in the plane of the couple.
This moment is equal to the product of one of the two
forces by the perpendicular distance between the lines of
action. Any system of forces acting on a rigid body may
be reduced to a force and a couple. The moment cocffi-
cient for an airfoil at zero lift is a couple.

Fundamental Dynamics. Newton's laws of motion are:

1. Every body continues in its state of rest or its state
of uniform motion in a straight line, unless it is com-
pelled by external forces to change that state.

2. Change in momentum is proportional to impressed
force, and takes place in the direction in which the
force acts.

3. Action and reaction are equal and opposite.
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Newton's second law is sometimes amplified, or a fourth
law set up by the statement, ‘“The effect of a force on a
body is the same, whether it acts alone or in conjunction
with other forces.”

The law of conservation of energy is, “The total energy
of any material system is a quantity which can neither
be increased or diminished by any action between the
parts of the system, although the form of the energy may
be changed.”

The foregoing laws enter into the solution of practically
all problems involving forces and motions.

Fundamental Units

Nearly all of the-physical quantities used in mechanics
may be expressed in terms of three independent funda-
mental units. A fundamental unit should have the fol-
lowing propertics:

1. It should be a quantity for which very accurate com-
parisons are possible with other quantities of the
same kind.

2. The comparison should be simple and direct.

3. The comparison should be possible at any time or place.
That is, the quantity should be such that a suitable
standard value can be established and copies made.

The three quantities best adapted for usc as funda-
mental units are length, mass, and time. All other units
are derived in terms of these. The fact that any value
may be assigned to the fundamental standards has led to
considerable confusion in standard length and standard
mass. The mean solar second, defined as 1/86,400 of a
mean solar day is the universal standard unit of time.

There are two important systems of fundamental
uaits in wide use. These are the metric centimeter-gram-
second or cgs system and the English or foot-pound-sccond
system.




Ch. 1] DEFINITIONS AND SYMBOLS 7

The centimeter is defined as 1/100 part of a meter.
The standard meter is the length between two marks on a
platinum alloy rod prepared by Borda in 1795, and origin-
ally intended to be 1/10,000,000 part of the distance
between the equator and the pole measured along the
meridian through Paris. The fact that it is not exactly
the intended length has little bearing on its value as a
standard. The gram is defined as 1/1,000 part of the
standard kilogram. The standard kilogram is the mass
of a block of platinum also prepared by Borda in 1795, and
intended to equal the mass of 1,000 cubic centimeters of
distilled water at 4° Centigrade. Subsequent measure-
ments show that while the two masses are very nearly
equal, there is enough difference to require that we con-
sider the standard of mass as Borda's block and not as
1,000 cc of distilled water. These discrepancies have no
bearing on the usefulness of the metric system. It is the
decimal divisions rather than the actual units that have
led to the almost universal use of the metric system in
scientific work.

The English system of units is used in Great Britain and
the United States, but owing to slight differences in the
legal definitions, the actual standards in the two countries
are not the same. The legal standard of length in Great
Britain is the yard, now having a legal equivalent of
0.9143992 meters. By Act of Congress July 28, 1866,
the standard yard in the United States was established
as 3,600/3,937 = 0.91440183 meters. The difference is
about 1 part in 360,000. A slight discrepancy also exists
in the standard of mass. The legal equivalent of the
British pound mass is 453.59245 grams. The legal equiva-
lent of the United States pound mass is 453.5924277
grams. The British standard mass is, therefore, heavier
than the United States standard mass by about one part
in 20,000,000. These discrepancies are obviously of no
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practical imporfance in engineering calculations. They
are pointed out at this time to emphasize the arbitrary
nature of the fundamental standards and to indicate the
main reason why scientists recommend the universal
adoption of the metric system.

Derived Units

Two systems of units, the absolute and the gravita-
tional, may be derived from the fundamental standards.
The fundamental equation F = mae may be written

Unit Force = Unit Mass X Unit Acceleration

In the English system the unit of mass is the standard
pound weight. The unit of acceleration is one foot per
second per second. Since the acceleration due to gravity
is about 32 feet per second per second for the force of a
pound weight acting on a pound mass, it is obvious that
the unit of force must be 1/g or about 1/32 of the force
due to gravity on the pound weight. This unit, called the
poundal, is approximately equivalent to the force exerted
by gravity on a half-ounce weight. It is an absolute force,
independent of the value of gravity.

The poundal is inconveniently small as unit force in
engincering work. The engineer, therefore, adopts what
are known as gravitational units and takes for the unit
force the weight of the standard pound. This force is g
times the poundal, so the unit of mass must be g times the
standard pound weight. This unit of mass is usually
called the “slug” or the “gee pound.”

The fundamental equation F = ma may be written in
three ways:

p = ma (18)

where p is the force in poundals, and m is the mass in

pounds,
gF = ma (1b)

el eeeeeeemm o —
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where F is the force in pounds, and m is the mass in pounds,
or

= ?Wa (1¢)

where F is the force in pounds and W is weight in pounds.

If local g is used, there is no difference in these cquations.
However, the inconvenience of varying g is greater than the
effect of varying F, and the engineer adopts as standard
a value of g that is about the average for 45° latitude.
This standard value is 980.665 cm/sec/sec or 32.1740
ft/sec/sec. Actual values of g vary from this standard by
a maximum of about one-third of one per cent. The errors
involved are negligible, but it is highly important that the
enginecer understand just what assumptions have been
made in order that confusion may be avoided.

In the cgs system, the same conditions exist. The
absolute unit of force is the dyne, about 1,981 of the weight
of one gram. The metric-gravitational system uses as
the unit of force the weight of one kilogram and the unit of
acceleration is one meter/sec/sec. Hence, the ‘“‘metric
slug” is Kg weight divided by g in meters/sec/sec or

Force in Kg = weight Kg (meters, sec/sec)

Reference Axes

Forces and moments acting on an airplane are con-
veniently referred to a definite set of three mutually per-
pendicular axes having specified directions for positive
forces and positive moments. A positive moment is
always assumed to act in the direction of rotation between
positive directions of the axes in cyclic alphabetical order:

X—Y Y~—>Z7 and Z—> X

Three types of axes are used in aeronautical computa-
tions. Each type has its special applications and there
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should be no confusion regarding the conventions in any
given case. The three types are:

1. Axes fixed in space. These are the ‘‘gravity axes”
used in following the motion of the center of gravity
in certain performance problems. The X axis is
horizontal with the positive direction in the general
line of flight which, in accordance with the usual
convention, is plotted with the positive direction
from left to right. The Y axis is also horizontal with
its pusitive direction away from the observer on the
ground. The Z axis is vertical with the positive
direction upwards. These axes are used chiefly
for motion in a vertical plane, involving only X and Z.

2. Axes fixed in the airplane. These are the *‘airplane
axes’' or “body axes,” and the chief use is in stability
calculations. The origin is taken at the c.g. of the
airplane. The X or longitudinal axis is directed
forward and made parallel to the thrust line or to the
wing chord, although any definite reference line mayv
be used, such as the keel line of a flying boat hull.
The Y or lateral axis is normal to the plane of sym-
metry and its positive direction is towards the right
wing tip. The Z or normal axis is in the plane of
symmetry and directed downwards.

3. Axes moving with the airplane. These are called ‘‘wind
axes,” or ‘“wind-tunnel axes.” Unless otherwise
specified, these axes are understood to be used in all
general aeronautical work. The X or drag axis is
directed to the rear, in line with the direction of the
relative wind. The ¥ or cross-wind axis is perpen-
dicular to the plane of symmetry and if the con-
vention as to direction of positive moments is to be
consistent, its positive direction must be from right
to left. The Z or lift axis lies in the plane of sym-
metry with positive direction upward.

It will be noted that the wind axes are directed exactly
opposite to the body axes. The body axes are known as
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right-hand because in looking along the positive direction
of any one of the axes, the positive moment acts clockwise
or in the direction of motion of a right-hand screw. With
the same convention, the wind axes would be left-hand,
since the direction of rotation for positive moment is
counter clockwise. However, wind axes are seldom used
in this sense. They are used almost entirely under con-
ditions which place the observer outside of the airplane
so that the direction of positive moments becomes right-

WIND AXES
Figure 1. Positive Directions for Wind Axes

hand, if from any point on the positive branch of an axis
the observer looks toward the origin.  Since the wind axes,
as defined above, are the natural axes to use, it makes little
difference whether they are right-hand or left-hand with
regard to an unused convention.
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The extensive use of wind axes makes it imperative
that the engineer visualize clearly the relations involved
in the positive reference angles. Figure 1 may be of some
assistance in this respect.

Air Forces and Moments. Unless otherwise specified, it
will be understood that the air forces acting on an airplane
are referred to the wind axes previously described.

Forces or force components along the three axes X,
Y, and Z in this system are known as drag, cross-wind
force, and lift, respectively.

Angular displacements about tk= three axes X, ¥, and
Z in this system are known as roll ( - pank), pitch, and yaw.
Moments have the same designation as angular displace-
ments, for example, a pitching moment tends to cause rota-
tion about the transverse or Y axis.

Dynamic Pressure. The dynamic pressure ¢ = pV?/2 is
the pressure developed in bringing a moving perfect fluid
to rest. Since the standard density is p, = 0.002378
slugs per cu ft

go = 0.001189 V* (2)

where ¢, is in Ib/sq ft and V is in fps, or
¢o = 0.002558 V~* (2a)

where ¢, is in Ib/sq ft and V is in mph.
The value of g at any air density other than the standard
is obviously

P
¢ = o (3)

The relation between velocity in standard air and a
given dynamic pressure in Ib/sq ft is

V = 29.00 \/q—ofps (4)
or
V =19.77 v/g, mph (4a)
—— L - . ot Al ... oo
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In the metric system for ¢ in Kg/sq m and V in m/sec

go = 0.0625 V* (s5)
and
V=4vVg (sa)

Coefficients. Forces and moments are usually given, as
a matter of convenience, in the form of coefficients. Prac-
tically all of the early work in this country made use of
coefficients having the dimensions of (lb/sq ft)/(mph)?,
and used the symbols K, for lift and K, for drag. These
coefficients were based on air of standard density and
defined by the relations

Lift = L = K, (p/p.) SV* (6)
Drag = D = K, (p/p.) SV* (7)

Where S is the area in sq ft and V the relative air speed
in miles per hour. This form of coefficient is numerically
equal to the force acting on one square foot of surface at
a speed of one mile per hour in standard air.

About 1919 the National Advisory Committee for
Aeronautics recommended the adoption of ‘‘Absolute
Cocfficients’’ having the same value in any consistent
system of units. The coefficients tentatively adopted were
defined by the relations

L=L,pSV )]
D=D.oSV* (9)

The coefficients L, and D, are the same as K, and K, used
by the British.

With the improvement in theoretical aerodynamics it
became evident that there were many advantages in the
use of the particular form of absolute coefficients employed
by Prandtl. Therefore, in 1921, the National Advisory
Committee for Aeronautics decided to recommend the
general use of these coefficients C;, and Cp, defined by the
relations
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L= CLQS (IO)
D=CpqS (11)

I

where ¢ 1s the dynamic pressure 3pV?. This form of co-
efficient is now used almost exclusively.
The relations between the three types of coefficients are
CLo=2L, =391 K, K, = 0.002558 C, = 0.005116 L.
Co

It

2D, = 391 K; K. = 0.002558 Cp = 0.005116 D,

Absolute coefficients used for moments are similar in
form to C, and Cp. Since these must include a character-
istic length in addition to the area S, the span b is used for
rolling and yawing moments and the chord ¢ for pitching
moments as follows:

Roliing Moment, L = C;¢b S
Pitching Moment, M = Cngc S
Yawing Moment, N = C.gq¢b S

Symbols

\Where there is no confusion regarding the intended
meaning, the use of symbols for various physical quantities
leads to conciseness and clarity. However, if there is any
ambiguity of meaning, the symbol loses its value entirely
and becomes an unqualified nuisance. In order to avoid
this situation, the author prefers to use only those symbols
for which there can be no confusion regarding the intended
meaning and to insure clarity by repeated definition in the
text.

The following list of symbols in general use is included
for reference:

Aerodynamic center (in terms of chord) a

Acceleration due to gravity g

Air speed (general) ) . . . .V
Indicated . . . . . . . . . . V.
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Maximum L.

Stalling
Altitude
Angle of:

Attack (measured from chord line)

Attack, absolute (measured from zero lift)

Attack, induced

Pitch .

Roll or bank

Trim (seaplane)

Yaw . . . . .

Control-surface deflection:

Elevator
Rudder .
Aileron .
Flap
Tab

Downwash .

Wing setting or incidence

Stabilizer setting or incidence
Angular velocity .

Area general . .

Wing (upper St, lower S.)

Tail . . . .
Area ratio (reciprocal of aspect ratio)
Aspect ratio (b°/.5)

Ceiling, absolute .

Ceiling, service

Center of gravity

Center of pressure

Center of pressure coefficient
Chord, mean aerodynamic (M.A.C.)

Upper wing

Lower wing
Cross-wind force .
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Density, air mass per unit volume .
Standard .
Relative
Displacement, axial:
Longitudinal
Lateral
Normal

Displacement, angular:
In roll
In pitch
In yaw . . . . . .
Displacement, Ib (seaplane hulls and floats)
Distance from c.g. to elevator hinge axis
Drag, in general .
Induced
Parasite
Profile . .
Drag coefficient, absolute .
Drag coefficient, minimum
Drag coefficient, induced
Drag coefficient, parasite
Drag coefficient, profile
Dynamic pressure pV?/2 .
Efficiency
Force, cross-wind
Force, coefficient of cross-wind
Force, general . . .
Force, parallel to body axes:
Longitudinal
Lateral
Normal
Gap .
Kinematic viscosity
Lift .
Lift coefficient, absolute

1Ch ¢

Po
P/Po =0

N

S o~LELS =%

5]

NE QN M
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Lift coefficient, maximum . . . . . . . ClLmas
Lift/Drag ratio . e e e e . L/D
Loading, power lb/bhp C e e e wy
Loading, wing 1b/sq ft e . .,
Mass (= w/g) m
Moments:
Rolling . . . ... . . L
Pitching . . . . . . . . . . M
Yawing N
Moment coefficients, absolute (for vund a*(es)
Rolling . . . . . . . . . . Ch
Piiching . . . . . . ) . . . Ca
Pitching at zero lift . . . . . . . Cao
Yawing . . . . . . . Ca
Moment of inertia [= (W g) >< . . . . T

Moments of inertia (about axes):

Longitudinal (in roll) . . . . . 4

Lateral (in pitch) . . . . . . . . B

Normal (in yaw) C
Normal force coefficient . . A . Cx
Pitching moment coefficient at zero hft . . . Cro
Pitch ratio, effective . . . . . . . V/nD or J
Power . . . . . . . . . . . P
Brake horsepower . . . . . . . . bhp
Thrust horsepower . .« . . . thp
Power coefficient (= P, p 3 DS) Cp
Pressure . . 4
Propeller dlameter . e D or Diam.
Propeller pitch, geometric . . P
Propeller rate of rotation: Rev olutxons per second n
Radius of gyration E
Resultant force R
Reynolds Number (= pVL/u) RN
Slope of lift curve (= dCL/da) . a
Span b
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Span factor, Munk’s equivalent monoplane . . . k
Thrust . . . . . . . . . . . T
Thrust coefficient (= T/pn:DY) . . . . . Cr
Torque . . . L S . Q
Torque coefficient (= Q/pnz D% . . . . . Cq
Velocity . . . ) . . . . . .V
Velocity, angular component in:

Roll (about longitudinal axis) . . . . . P

Pitch (about lateral axis) . . . . . . q

Yaw (about normal axis) . . . . . . 7
Velocity, linear component along:

Longitudinal axis . . . . . . . .ou

Lateral axis . . . . . . . . . v

Normal axis . . . . . . . . .ow
Velocity of sound . . . ) . . . . a
Velocity, terminal . . . . . . . . Vr
Viscosity, coefficient of . . . . . . T
Viscosity, kinematic . . . . . . . .o
Weight . . . . . . . . . . . W

Abbreviations. Throughout this volume it will be neces-
sary to make frequent reference to the publications of the
National Advisory Committee for Aeronautics, hercafter
referred to as N.A.C.A., and to the publications of the
British Aeronautical Research Committee, hereafter re-
ferred to as the Br.ALR.C.

The N.A.C..\. publications are classified in three groups,
as Technical Reports, Technical Notes, and Technical
Memorandums which will be designated as T.R., T.N.,
and T. M., respectively, followed by the serial number of
the publication.

The publications of the Br.A.R.C. are entitled ‘““Reports
and Memoranda.” These will be designated as R. & M.
followed by the proper serial number.




CHAPTER 2
ELEMENTS OF THEORETICAL FLUID DYNAMICS

Literature on Theoretical Aerodynamics. There are now
available in English a considerable number of works on
theoretical Hydrodynamics and Aerodynamics. No one
volume among these can be selected as filling all possible
requircments. The following list does cover the ficld,
however:

Lamb, H., “Hydrodynamics.” Cambridge University
Press (1916).

Wilson, E. B., “Aeronautics,” John Wiley & Sons, Inc.
(1920).

Glauert, H., “The Elements of Airfoil and Airscrew
Theory,” Cambridge University Press (1926).
Munk, Max M., “Fundamentals of Fluid Dynamics for
Aircraft Designers,” The Ronald Press Co. (129).
Reid, E. G., “Applied Wing Theory,” McGraw-Hill Book
Co., Inc. (1932).

Munk, Max M., “The Principles of Aerodynamics,”
Munk (1933).

Durand, W. F., and Munk, M. M., “Aerodynamic Theory,”
Vol. I, Part I and Part II, Julius Springer, Berlin (1934).

Each of the volumes listed above contains much of value
to the student. Wilson, Glauert, Reid, and Munk are
rccommended as elementary and fundamental treatments
suitable for the beginner. Lamb's “Hydrodynamics’ is
the classical general treatment of the subject. It is com-
plete, but perhaps rather difficult for the student to follow
unless he has a fair knowledge of the fundamentals. “Aero-
dynamic Theory,” cdited by Dr. Durand, is the first volume

19
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of a proposed six-volume ‘“‘General Review of Progress
under a Grant of the Guggenheim Fund for the Promotion
of Aeronautics.”” It contains an excellent presentation
of all of the fundamental theory, well arranged and illus-
trated in a manner that is of great assistance to the student
in grasping the physical significance of the fundamental
relations employed.

A number of excellent works on hydrodynamics are also
available in French and German. Those best known to
the engineers in this country are:

Joukowski, N., ‘““Aerodynamique,” Pub. Gauthier-Villars
et Cie., Paris (1916).

Fuchs, R., and Hopf, L., “Aerodynamik,” Pub, R. C.
Schmidt & Co., Berlin (1g22).

Eberhardt, C., “Einfuhrung in die Theoretische Aero-
dynamik,”’ Pub. R. Oldenbourg, Miinchen (1927).

Hydrodynamical Definitions. Before giving an outline of
some of the important applications of theoretical aerody-
namics to the problems of airplane design, it is desirable to
define the terms most frequently employed. These defi-
nitions necessarily involve the mathematical relations em-
ployed in the original derivations, but the inclusion of the
complete derivations is bevond the scope of this volume.
The highly abridged definitions that follow are intended to
give the engineer a reasonably clear conception of the
meaning of the terms most frequently used. The student
is referred to any of the works listed in the preceding para-
graphs for the complete derivations.

Fluid Flow. The first step in the mathematical investi-
gation of fluid flow is usually made with the assumption
of a continuous perfect fluid, incompressible and without
viscosity. Although air is compressible and viscous, these
factors are normally of secondary importance in the types
of flows that are of greatest interest.
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The sccond step is the selection of a set of rectangular
axes to which the motion may be referred. If the flow
around an object is being considered, these axes may most
conveniently be fixed relative to the body which may be
considered stationary in the moving fluid. The fluid ve-
locity at any point is defined by its axial components u,
o, and w, along the axes X, Y and Z, respectively.  The
chief problem in the mathematical investigation of fluid
flow is to determine the velocity at a given point. The
method actually used depends on the conditions of the
problem. If the flow is of a simple type, it may be pos-
sible to obtain a simple expression for the velocity field.
If the flow is complex, .t may be necessary to resolve it into
simple components before a mathematical relation can
be found. In most cases the solution follows from the
application of the simple fundamental laws of motion to
a particle in the fluid. Three types of fluid motion are
involved: (1) translation, (2) rotation, and (3) deformation.

Superposed Flows. In many of the problems in hydro-
dynamics, it is desirable to consider that a given flow is
produced by two or more component flows.  The usual
case superposes a local circuliation or a system of flow in
closed curves upon a general flow in which the particles
move in parallel straight lines. 1 the variation of velocity
in the ficld of the circulatory tlow can be expressed in terms
of the distance from the origin, then the vector resultant
of the circulatory and translatory velocities at any point
may be obtained by calculation. The flow around an air-
foil may be obtained in this manner.

Two-Dimensional Flow. A flow which is two-dimensional
in the plane of X-Y will be exactly similar in any parallel
plane. An example of such a flow is that around the center
of a very long cylinder or strut. Two-dimensional flows
can be completely investigated by considering the flow in
a single plane.
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The mathematical conditions for two-dimensional flow
are: (1) no velocity component along the Z axis, and (2)
no X or Y velocity gradients along the Z axis. That is,

w=210

ou dv

oz 3z
Three-Dimensional Flow. The gencral motion of a fluid
is three-dimensional with acceleration and velocity com-
ponents along all three axes. An elementary example of
three-dimensional flow is that about a solid of revolution
or a streamline body.

+X

Figure 2. Fluid Flow Components

Stream Function. Consider the two-dimensional flow
of a continuous and incompressible fluid across an clement
ds of any curve in the plane of the flow, as shown on Figure
.2. The general fluid velocity is V having axial components
# and v. The flow across ds must be equal to the algebraic
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sum of the flows across dx and dy, since otherwise the
density within the triangle formed by ds, dx and dy would
not remain constant. The flow across dx is v dx, and the
flow across dy is — u dy. Hence, the flow across ds from
right to left is

vdx ~ udy = dy (12)
and the flow across any curve joining the points (x., y.)
and (x, ) is

2 _—:j;x':u(z' de — udy) = ¢(x, v) — ¢ (x., Vo) (13)

3,

¢ is called the “Stream Function” because it determines
the amount of fluid streaming across any curve connecting
two points in the fluid. When ¢ is known, the velocity
components are determined by

e W 0=
dy dx

Streamline. The instantaneous path of a fluid particle
is called a streamline. Mathematically, a streamline is
defined by ¥ = constant or dy = 0, since for this condi-
tion no fluid can stream across the curve so deined.  In
steady flow, the streamlines are the actual paths of particles

in the fluid.

Circulation. The circulation of a fluid is determined by
the flow along a boundary as contrasted with the flow across
a boundary used in defning stream function. The flow
along an clement ds of any curve in the fluid is the product
of ds by the component of the velocity along ds.  The com-
ponent of the velocity along ds is (V, . cos8), where T7,
is the resultant velocity making an angle 6 with the element
ds. The circulation is determined by the line integral of
the tangential velocity V, cos 8 taken around any closcd
circuit or

I'= S V,cos8ds (14)
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Resolving the tangential velocity into its axial com-
ponents gives

. o dx dy
V,LosB—uds—}—zdS

hence I'= S (udx + vdy) (15)

As an example of the use of circulation, the lift on an
element of unit length in a wing of infinite span varics
directly with the circulation around it. That is,

L =o'V (16)

where p is the density and ¥V the relative velocity measured
ata great distance from the element. Thisis the well-known
Kutta-Joukowski equation. Owing to its frequent use,
many engincers instinctively associate circulation with lift.
It should be understood that circulation, in general, is a
type of fluid motion and that in any particular case it has
the value given by the line integral, equation (135).

For a wing of finite span, the lift, and from it the in-
duced drag, can be calculated only when the distribution
of circulation along the span is known. If the circulation
is constant along the span, then dI'/db is zero except at the
tips where it equals . This would correspond to a constant
lift along the span, and there would be a vortex at cach
tip only. Actually, there is a vortex at cach tip and a
gradient of I' along the span giving a maximum value of
I' at the center and zero at the tips.  The vortices which
peel off of the trailing edge vary in strength with T /db.
Hence, the variation in vorticity along the span is from
a maximum positive value at one tip to an equal negative
value at the other tip, passing through zero at the center.

Rotation. Rotation in a two-dimensional flow is defined

as the ratio of the circulation around the boundary of a
closed curve to the area enclosed by the curve. In three-
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dimensional flow, the component of rotation about one of
the reference axes is determined by the component of circu-
lation in the plane of the other two axes.

Circulation and rotation are thus related, although
they differ in that circulation refers to a definite area or
mass of the fluid while rotation refers to the constituent
particles that combine to produce circulation. Rotation
and vorticity are identical.

Rotation in a fluid does not mecan the same thing as
circulatory motion. It may be shown that the motion
of a fluid in concentric streamlines is irrotational if the
velocity varies inversely as the radius. It may also be
shown that a particle of fluid rotating like a solid body has
a rotation of twice its mean angular velocity.

IRROTATIONAL ROTATIONAL

Figure 3. Effect of Rotation on the Motion of a Fluid Particle

The sketch, Figure 3, shows the difference in the be-
havior of a tluid particle in the two types of motions,

Bemnoulli’s Theorem. Bernoulli’s thcorem states that
the total energy of a fluid particle is constant at all points
on its path in a stcady flow. In equation form,

PV
1;+'2g"+2-—11 (17)
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where P/w is the ‘‘pressure head,” V?/2g the ‘‘velocity
head,” Z the potential head, and /I a constant. w is the
specific weight of the fluid. It will be noted that this equa-
tion is essentially an application of the law of conservation
of energy to a fluid particle.

The equation is due to Daniel Bernoulli and dates from
1737. In the original form and as given, it applies only
to steady flow of an incompressible fluid, but many of the
more common problems of hydrodynamics are solved by
its use, with the following restrictions:

For a general fluid in general motion, /] is never constant.

For an incompressible fluid in general motion, /7 is con-
stant for a given particle.

For an incompressible fluid in steady motion, /I is con-
stant for all particles along a streamline.

For an incompressible fluid in steady irrotational motion,
I1 is constant for all particles throughout the fluid.

In most of the flows considered in acrodyvnamics. the
potential or clevation head Z does not change and Ber-
noulli’s equation takes the form

p + 3oV’ = a constant (18)
or

static pressure 4+ dynamic pressure = total pressure.

Velocity Potential. [f the tluid flow is such that the
circulation about every closed curve vanishes, it may be
shown that « dx + v dy is an exact differential which may
be written

udx +vdv=—do (19)
from which
u= —0b/ox v = — 3®/dy

In a flow of this type, the velocities are negative deriva-
tives of the function @ (x, y) which is known as velocity

e —— . A e . R . - —_ e
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potential.  The flows of this type are designated potential
flows and exist only where the motion is frrotational

There 1s a definite physical significance in the velocity
potential. It is a velocity gradient that may be produced
by an impulsive pressure acting on a fluid boundary.
Velocity potential and stream function are analogous to the
lines of force and magnetic flux in a magnetic field.  Con-
stant values of the velocity potential @ give equipotential
contours or lines of force.  Constant values of the stream
function ¥ give the streamlines or instantancous directions
of flow. Lines of constant ® and constant ¢ always inter-
sect at right angles.

The lines of constant ¢ and constant & may be visible
in certain cases.  For example, an observer on a boat can
sce the streamlines made visible by foam or floating
objects.  The lines of constant ® are visible on the surface
of calm water, while a boat is being accelerated from rest.
This cffect requires proper lighting and surface conditions
such as are found, for example, in a model basin.

¢ and ¢ are connected by the mathematical relation

dy = vdx — udy = — g%dx +g§d,\’ (20)

To recapitulate, a velocity potential ¢ can exist only
when the motion is irrotational.  If the motion Is irrota-
tional, ® can exist in cither a compressible or an incompres-
sible fluid. A\ stream {unction ¥ can exist only in an in-
compressible uid, but it is independent of rotation.  For
irrotational motion in an incompressible fluid, either a
velocity potential or a stream function, or both, may exist.

Sources and Sinks. Many flow conditions are readily
duplicated by the assumption that fluid is generated at
certain points called “sources” and absorbed at other
points called “sinks.”  Sources and sinks are not neces-
sarily confined to points.  They may be given any desired
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distribution along a line or over a surface. The only re-
quirement is that if the boundary curve between the fluid
in the general flow and the fluid produced by the sources
is to be closed, then the total fluid absorbed by the sinks
must be equal to the fluid produced by the sources.

The flows produced by sources and sinks are casily
calculated and visualized. Hence, they are very useful
for illustrating some of the fundamental methods in the
mathematical analysis of fluid flow.

Consider the two-dimensional flow due to a line source
generating fluid per unit length at the rate of Q units per
second. Assuming that the fluid is continuous and incom-
pressible, the flow must be outward in radial lines along
which the velocity decreases inversely as the distance from
the center. The flow across a circle of radius r with its
center at the origin is

V = Q/2nr
This i1s a form of potential flow. Since V = — 9®/3r, the
velocity potential for a source is
- _Qrdr__0Q
P = P b log r (21)

The flow for a sink is obtained by reversing the sign of Q.

The combined effect at any point produced by a system
of sources and sinks is obtained by adding the individual
velocity potentials.

Vortex Motion—Vortices. Vortex motion is a common
natural phenomenon appearing in different outward forms
and covering a tremendous range in scale extending from
a tiny whirlpool or eddy that is barely visible to the naked
eye to a tropical hurricane or a cyclonic air movement that
affects an entire continent. The vortex in nature, con-
sidered as a fluid motion, may or may not be irrotational.
It is irrotational if the tangential velocity varies inversely
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as the distance from the center. It is rotational to the
extent that the velocities vary from the inverse law. In
all probability some rotation is always present in a natural
vortex.

The mathematical vortex used in hydrodynamics is
simply an irrotational motion in which the velocity varies
inversely as the distance from the center. It is a concept
that has been found very helpful in the solution of many
problems connected with a lifting wing. The important
point for the engineer to grasp is that by the superposition
of a vortex field on a simple potential flow, it is possible to
duplicate very closely the actual flow around a wing. This
does not mean that there is an actual physical vortex
surrounding the wing. It means that the distribution of
circulation velocity corresponds closcly to that required
for a vortex. As a matter of fact, identical results can be
obtained in many cases as Munk® has shown by the use of
fundamental cnergy relations instead of vortices.

In order to avoid the infinite velocities otherwise re-
quired at the origin, it is assumed that vortex motion
takes place about a very small corc within which the motion
is rotational. Vortex motion may be distributed along a
line of any desired shape. Such a line is known as a vortex
line or vortex filament. The core enclosing such a line is
known as a vortex tube.

A vortex is stable motion, persisting indefinitely in a
perfect fluid. Its strength is constant with time and con-
stant over the entire filament length. A vortex filament
cannot begin or end at a point within the fluid.

In the application of vortices to the lifting wing, these
requirements are met by considering the vortex motion
distributed along three sides of an open rectangle, one side
of which is the span of the “lifting line” that replaces
the wing, and the other two are lines extending (theoret-

* Max M. Munk, “Elements of the Wing Section Theory and of the Wing Theoty.”
N.A.C.A. Technical Report No. 191.
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ically to an infinite distance) backward from the wing tip.
The circulation around this “horseshoe’” or U-shaped
vortex tube may be visualized as being similar to the flow
in a section of a smoke-ring; that is, the direction of rota-
tion does not change in going around the ring. Looking
downstream from the wing, the circulation in the left-
hand branch is clockwise and that in the right-hand branch
is counter clockwise, so that their motion, like two gears
in mesh, is such as to produce a downwash along the center-
line.




CHAPTER 3
APPLIED WING THEORY

The application of theoretical hydrodynamics to the
problems of air flow around a lifting wing has yielded
results that are exceedingly valuable to the airplane de-
signer. By the aid of these theoretical relations, it is now
possible to predict accurately the effects that changes in
wing arrangement will have on the aerodynamic character-
istics of a given airplane design.

In the original form, as reported by the scientists and
mathematicians responsible for the theoretical investiga-
tions, many of these important solutions are unsuited for
design application. It is the purpose of this chapter to
present applied wing theory in the form of design data.
Very few derivations will be given, but in each case refer-
ence is given to the original source of the theoretical deriva-
tion.

The contents of this chapter are concerned almost en-
tirely with the application of theory to wing design, but
this does not include all of the applied wing theory. An
attempt has been made to place some very important the-
oretical relations in other chapters where they logically
belong.

Induced Drag. In 1911, Dr. Prandtl and his assistants
at (ottingen derived a relation between the circulotion T
and the vertical or downwash velocity component %, due
to a lifting wing. At the same time it was proved that
half of the final downwash velocity was acquired forward
of the center of pressure, or in other words, a downward

31
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acceleration was imparted to the air at some distance
forward of a lifting wing which, therefore, operated in a
downwardly inclined air strcam. The average downwash
velocity at the center of pressure was found to be greater,
the greater the lift, and the nearer to the center of the wing
the main production of vortices.

As a result of the virtual inclination of the air stream
through the angle ¢ = tan™* (w/v), the wing ‘“goes up a
hill” having the slope ¢.- Consequently, the lift, which
is vertical to the relative wind, now has a rearward or drag
component. Without going into the details of the deriva-
tion* it was shown that the inclination of the lift vector,
and hence the drag, was a minimum when the downwash
was constant along the span, and that this condition corre-
sponded to a lift distribution proportional to the ordinates
of an ellipse having the span as a diameter.? The constant
value of the downwash velocity resulting from the ellip-
tical lift distribution was shown to be

w=TI,/2b

where T, is the circulation at the center of the span 5. [t
may be shown that the value of T, is

I'y = 4L/ mpVb

where L is the lift and p the density. Hence, the down-
wash velocity is
w = 2L/7rp Vb

Since the downwash is censtant along the span, the drag
D is
D = Lw,V) = 2L /npV* = L*/ngh’ (22)

T See L. Prandtl, "Applications of Modern Hydrodynamics to Aeronautics,” N.A.C.A
Technical Report No. 116 (1921).

2 The muthematical prbof was first given by Munk in his Géttingen Dissertation which was
subsequently translated and published as N.A.C.A. Technical Report No. 121 “'The Mini-
mum Induced Drag of Aerofoils.”
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It was found in 1913 that the actual measured drags
were greater than this theoretical minimum but the wing
sections investigated were very poor. Two years later,
investigations on much better wing sections showed close
agreement between the theoretical and the measured drag.
The investigation was then continued on wings of various
aspect ratio and a very important discovery made. At
the same lift coefficient with the same wing section, the
difference between the theoretical and measured drag
coefficients was always the same, within the experimental
error, of course, for any aspect ratio. The part of the total
drag which does not change with aspect ratio is due to the
shape of the wing scction and hence it was given the desig-
nation “Profile Drag’ or “Section Drag.”  The theoretical
drag, varying only with lift and span, was given the desig-
nation “Induced Drag” from the analogy to electrical
induction phenomena.  This constituted one of the most
important advances ever made in theoretical acrodynamics
and opened an immense ficld of practical application.

Substituting C.¢S for L and CpyS for D in cquation
(22) gives the coefficient of induced drag

C,nS

b

Cu, = (23)
The section drag is Cpo = Cp — Cp, and this is constant
for any given section and lift coctlicicnt. Hence, at a
constant value of C, the relation between the drags for
two aspect ratios is

CLlS._ . CrS,
Cor == = Con = =20,
or
C‘L2 qu S‘l
Cp, = Cp: + _71-\ [bl; bl‘,] (24)
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which enables the drag to be calculated for any aspect ratio
when the drag is known for one aspect ratio.

Induced Angle of Attack. Since the wing is operating in
a vertical downwash velocity of

w

T wp Vb’

and a horizontal velocity of 17, the relative wind dircection
is inclined downward to the rear of the wing by the angle
having the value

ofwN\ o 2L
¢ =y = tan <V> = tdan (,Tpl"‘/)"’)

¢ is always small so that tan ¢ = ¢, hence

2L .
¢ = a; = Fi)V:vb: (25)

a; is the “induced angle of attack.” It increases as the
aspect ratio decreases. The physical significance is that
as the aspect ratio is decreased, the downwash increases
and the wing must be turned up to a higher apparent or
geometrical angle of attack in order to obtain a given lift
coefhcient.

Munk’s Span Factor. Equation (23) was completed by
Munk, who showed that in order to apply to hiplanes (or
multiplanes) the maximum span b must be replaced by kb,
which is the span of the monoplane having the same arca
and induced drag as the bplane (or multiplane).  For a
monoplane 2 = 1.00, but for a biplane & varies with the
ratio of gap to span, the ratio of the spans, and the pro-
portional area in the two wings as will be shown later.
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The introduction of the span factor was of great prac-
tical importance. With this factor, equation (23) becomes

LGS
CDA - W(kb)) (233)
and equation (24) becomes
- C Cirs. S
Cl)z = (/l)l + T [(kzb;)l - (klb')z] (243)
In a similar manner, the induced angle of attack in radians
is
oS
a; = W(kb)) (253)

and in degrees the total angle of attack is

- S7.3CL[ S S
a; = (X + . [(klb“)z (ksz)I] (26)

Equation (26) is only approximately correct. Munk
completed it latert by dividing into three parts the angle
of attack necessary to produce a given lift coefficient.
These parts are as follows: (a) the intrinsic angle of attack
for the given wing section and lift coefficient, (b) the addi-
tional induced angle of attack, and (¢) the additional inter-
ference angle of attack.  With this modification, equation
{26) becomes

_ 57.3CL[(_S. S
@ = o I:((kzb,)‘ + I‘) - ((k.bx)‘ + I):] (26a)

where I is the interference factor. I varies slightly with
stagger and with wing section, and is less for a lift pro-
duced by curvature than for lift produced by angle of

3 Max M. Munk. "General Biplane Theory,” N.A.C.A. Technical Report No. 151
1022).
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attack. However, I is approximately a function of gap-
chord ratio only, with the following average values accord-

ing to Munk:

2.02 1.46 I.11 .98 .79

.64

Gap
— © 2.87
Chord
I 0 012 .024

J {
.030 .()55' .060( .082'l 104

These values are plotted in Figure 4.
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Figure 4. Munk’'s Interference Factor for Induced Angle of Attack

Prandtl’s Interference Factors.

Prandt! has shown* that

the drag of one wing of a biplanc in the presence of the other
may be expressed in the form

S
o ngbh.b,

D,, (27)

4 “Technische Berichte,” Vol. 1T, No. 6 (N.A.C.A, Technical Note No. 182) and N.A.C. A

Technical Report No. 116.
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where D, is the drag of wing 1 (having lift L, and span b,)
in the presence of wing 2 (having lift L, and span 4,) and ¢
is an “‘interference factor’” which varies with the ratios of
gap to span and slgprter span to longer span.

2

Prandtl gives values of ¢ in terms of ;* and B3 ___

average span

or (b—z_g—b—) as shown in Figure 5. These data have been

converted and replotted in Figure 6, using the ratio of
gap to maximum span, instead of the ratio gap to average
span.

\

N
ENN
- 3 \\\\\\\%00
2 ] \\ \68:\\\\
3 ~ .50\ \ \%\
. B Smnsass—
RATIO Av:_n“ﬁst'W= é;‘,,_

Figure 5. Prandtl's Drag Interference Factor for Biplanes, in Terms of
Average Span
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Figure «. Prandtl's Drag Intericrence Factor for Biplanes in Terms of

Maximum Span

Induced Drag of Biplanes. The interference factor ¢ may
be used to caleulate the value of the span factor & for any
biplane, as shown by Prandtl.  The method is as follows:

Let b,

Il

= span of longer wing

span of shorter wing
ratio shorter span to longer

lift on longer wing
lift on shorter wing

L, + L, = total lift
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Prandtl's equation for total induced drag is

1 [LY L, L?
D, = {q[bx + 2070 b] (28)

This is a minimum when
L./Ly = (p — 0)/[(1/u) — o]
and has the value

. I’ [ — o
Minimum D; = wqb;‘[l’—*;a‘# i #;] (29)

Assuming the lift proportional to the arca and setting
S =rS, it follows that S, = (1 —r)S, L, =rL and
L, = (1 —r)L. The factor r is obviously the ratio of

arca (or lift) of the longer wing to the total arca (or lift).
Substituting these relations into equation (28) gives

D, = -L’..[w +2700 = + <‘/‘~’)z] (282)
qu\ [ H“

from which the span factor is seen to be

u?
k= S E—— 0)
Pt — 2p0 4 1) 4 2r(ue — 1) + 1 (3
Figures 7, 8, 9, 10, and 11 give the values of £ against u
and » for ¢ b, = .05, .10, .15, .20, and .25. This covers

the extreme range ordinarily used.  The variation of %
is substantially lincar with G/b; between any two adjacent
values of ¢ b, and hence £ may be obtained by interpola-
tion. However, a great majority of biplane designs have
wings which approximate either equal chords or cqual
aspect ratio.  Figures 12 and 13 have been prepared to give
the value of £ directly in terms of b, b, and G 5.

Proportions of the Most Efficient Biplane. Iigure 14
gives the proportions of the most cfficient biplane as de-
termined from Figures 7 to 11. From this diagram the
best value of any one variable, ¢./¢,, G b, or b, b, 1s de-
termined when the other two are assumed or known,
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